Publication

Development of Mechanical Strengthening System for Bridge Connections Using Prestressed CFRP Rods

Résumé

Stringer-to-floor beam web-to-web double-angle connections are among the most fatigue-prone elements in old riveted bridges. These connections are often designed to carry only shear loads. However, in these elements, fatigue damage occurs because of the out-of-plane deformation of the connections, which is ignored in the original design. In this study, a new retrofitting system is developed to reduce the out-of-plane deformation of the connections using prestressed carbon fiber-reinforced polymer (CFRP) rods. The proposed system consists of a mechanical wedge-barrel anchor to hold the prestressed CFRP rod and a clamping system to attach to the parent structure and to transmit forces via friction. A series of finite-element (FE) simulations was conducted to optimize the size and performance of the retrofit system. Laboratory static pull-off tests were conducted and different failure modes were studied and discussed. A novel test setup (with four supports) was designed for testing the steel connections. The effect of the geometrical imperfections during the installation of the connection was carefully investigated using the FE models and was verified through laboratory the tests. Laboratory fatigue tests were conducted on steel connections with the same dimensions as those in a railway bridge. The designed retrofit system was found to be capable of reducing the stresses at the angle connections by more than 40%. The results of the fatigue tests demonstrated that the designed system could survive more than 11 million load cycles without any fatigue damage or any indication of a loss in the CFRP prestressing level. (C) 2020 American Society of Civil Engineers.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.