Optimal Adversarial Policies in the Multiplicative Learning System With a Malicious Expert
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In reinforcement learning (RL), an agent makes sequential decisions to maximise the reward it can obtain from an environment. During learning, the actual and expected outcomes are compared to tell whether a decision was good or bad. The difference between ...
Theoretical and computational approaches to the study of materials and molecules have, over the last few decades, progressed at an exponential rate. Yet, the possibility of producing numerical predictions that are on par with experimental measurements is t ...
This paper studies the operation of multi-agent networks engaged in multi-task decision problems under the paradigm of simultaneous learning and adaptation. Two scenarios are considered:one in which a decision must be taken among multiple states of nature ...
The central task in many interactive machine learning systems can be formalized as the sequential optimization of a black-box function. Bayesian optimization (BO) is a powerful model-based framework for \emph{adaptive} experimentation, where the primary go ...
EPFL2019
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
EPFL2020
,
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
This paper addresses the problem of combining Byzantine resilience with privacy in machine learning (ML). Specifically, we study if a distributed implementation of the renowned Stochastic Gradient Descent (SGD) learning algorithm is feasible with both diff ...
Making decisions is part and parcel of being human. Among a set of actions, we want to choose the one that has the highest reward. But the uncertainty of the outcome prevents us from always making the right decision. Making decisions under uncertainty can ...
Good train scheduling for a big network with many trains is very hard to achieve. As the trains are competing for the tracks with one another, the number of constraints grows rapidly. Trying to take advantage of emerging technologies in the areas of optimi ...
In many daily tasks, we make multiple decisions before reaching a goal. In order to learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary. Reinforcement learning (RL) theory suggests two classes of algorithms s ...