Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The adoption of process analytical technologies by the biopharmaceutical industry can reduce the cost of therapeutic drugs and facilitate investigation of new bioprocesses. Control of critical process parameters to retain critical product quality attributes within strict bounds is important for ensuring a consistently high product quality, but developing the sophisticated analytical technologies required has proven to be a major challenge. Here, we demonstrate a new optical technique for continuous monitoring of protein species as they are eluted from a chromatographic column, even when they fully co-elute with other protein species, without making any assumption about or peak-fitting to the elution profile. To achieve this, we designed and constructed a time-resolved intrinsic fluorescence lifetime chromatograph, and established an analytical framework for deconvolving and quantifying distinct but co-eluting protein species in real time. This proof-of-concept technology has potentially useful applications as a process analytical technology and more generally as an analytical technique for label-free quantification of proteins in mixtures. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Sandor Kasas, María Inés Villalba, Priyanka Parmar
Arne Seitz, Andrea Bassi, Antje Keppler