Signal-to-signal neural networks for improved spike estimation from calcium imaging data
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli ...
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning r ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
In this paper we present a method for automatic detection of motor intention from in vivo neuronal recordings in monkeys. The analysis relies on a data base of spike trains collected in a series of experiments aiming to study the hand-eye coordination mech ...
In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network ...
We investigate generic models for cortical microcircuits, i.e., recurrent circuits of integrate-and-fire neurons with dynamic synapses. These complex dynamic systems subserve the amazing information processing capabilities of the cortex, but are at the pre ...
The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for ...
Multiple measures have been developed to quantify the similarity between two spike trains. These measures have been used for the quantification of the mismatch between neuron models and experiments as well as for the classification of neuronal responses in ...
The complexity of processes occurring in the brain is an intriguing issue not just for scientists and medical doctors, but the humanity in general. The cortex ability to perceive and analyze an enormous amount of information in an instance of time, the par ...