The role of immune effectors in controlling Drosophila-microbes interactions
Publications associées (126)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In Drosophila, the Toll pathway plays an important role in the immune defense against Gram-positive bacteria and fungi. Molecular determinants coming from those pathogens are directly detected by pattern recognition receptors (PPRs) circulating in the hemo ...
The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible r ...
The Drosophila Toll receptor does not interact directly with microbial determinants, but is instead activated by a cleaved form of the cytokine-like molecule Spätzle. During the immune response, Spätzle is processed by complex cascades of serine proteases, ...
The Toll receptor was initially identified in Drosophila melanogaster for its role in embryonic development. Subsequently, D. melanogaster Toll and mammalian Toll-like receptors (TLRs) have been recognized as key regulators of immune responses. After ten y ...
Invertebrates lack an adaptive immune system and rely on innate immunity to resist pathogens. The response of Drosophila melanogaster to bacterial and fungal infections involves two signaling pathways, Toll and Imd, both of which activate members of the nu ...
Gut homeostasis is controlled by both immune and developmental mechanisms, and its disruption can lead to inflammatory disorders or cancerous lesions of the intestine. While the impact of bacteria on the mucosal immune system is beginning to be precisely u ...
This chapter discusses the mechanisms whereby Drosophila recognize foreign microbes, the signalling systems that regulate adapted responses against them, and the effector mechanisms used to control them. It first focuses on the so-called systemic antimicro ...
The Jacques Monod conference "Insect Immunity in Action: From Fundamental Mechanisms of Host Defense to Resistance Against Infections in Nature," organized by Ulrich Theopold (Stockholm University, Sweden) and Dominique Ferrandon (CNRS, France), was held i ...
Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this thres ...
Epithelial tissues facing the external environment are essential to combating microbial infection. In addition to providing a physical barrier, epithelial tissues mount chemical defenses to prevent invasion of internal tissues by pathogens. Here, we descri ...