Publication

Tessellation and lmprovement of Simplicial Meshes using Neural Networks

Alexis Papagiannopoulos
2021
Thèse EPFL
Résumé

Modern mesh generation addresses the development of robust algorithms that construct a discrete representation of the geometry into polytopal elements conforming to divergent properties: (i) fidelity to complex geometrical features, (ii) support for high spatial resolution in areas of interest and sparsity elsewhere, and (iii) preservation of optimal element geometry (quality). The automation of the meshing process with respect to these properties is still considered a critical bottleneck as it is often tied to the development of complex algorithms. Although such algorithms produce meshes that satisfy desirable properties, they may entail a significant computational cost. To tackle the automation hurdles of current algorithms, this research work studies the adaption of Neural Networks (NNs) that have been proven efficient in automating complex problems, for the development of meshing algorithms. A machine learning meshing scheme for the generation of simplicial meshes is proposed based on the predictions of NNs. The scheme is applied to small contours with up to 16 edges. The data extracted from the meshed contours are utilized to train NNs that approximate the number of vertices to be inserted inside a contour cavity, their location, and the connectivity. Based on an element quality metric, the results show a maximum deviation of 27.3% on the minimum quality between the elements of the meshes generated by the scheme and the ones generated from a reference mesher. This level of deviation corresponds to produced meshes with element angles that lie between 28°

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Mesh generation
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired.
Mesh (objet)
Un en ou maillage est un objet tridimensionnel constitué de sommets, d'arêtes et de faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les faces se composent généralement de triangles, de quadrilatères ou d'autres polygones convexes simples, car cela simplifie le rendu. Les faces peuvent être combinées pour former des polygones concaves plus complexes, ou des polygones avec des trous. L'étude des en fait partie importante de l'infographie tridimensionnelle.
Geometry processing
Geometry processing, or mesh processing, is an area of research that uses concepts from applied mathematics, computer science and engineering to design efficient algorithms for the acquisition, reconstruction, analysis, manipulation, simulation and transmission of complex 3D models. As the name implies, many of the concepts, data structures, and algorithms are directly analogous to signal processing and .
Afficher plus
Publications associées (43)

Region Extraction in Mesh Intersection

Annalisa Buffa, Pablo Antolin Sanchez, Emiliano Cirillo

Region extraction is a very common task in both Computer Science and Engineering with several applications in object recognition and motion analysis, among others. Most of the literature focuses on regions delimited by straight lines, often in the special ...
2023
Afficher plus
MOOCs associés (10)
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Systèmes d’Information Géographique 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Afficher plus