The role of PDE-based parameterization techniques in gradient-based IGA shape optimization applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
Fifty years ago, transportation and logistics problems were primarily analyzed either from a supply-side or a demand-side perspective, with the fields of operations research and demand modeling evolving separately. Since then, there has been a growing inte ...
Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...