Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.
Partage de fichiersLe partage de fichiers est une technique de transfert de fichier consistant à distribuer ou à donner accès, à distance, à des données numériques à travers un réseau informatique. Il peut s'agir de fichiers de toutes sortes : logiciels, livres, vidéo, audio etc. Deux techniques de partage de fichiers existent actuellement : l'hébergement centralisé (modèle client-serveur) permet de stocker les données sur un serveur de fichiers unique et d'y accéder sur celui-ci depuis un autre ordinateur (dit le client).
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Client-serveurLe protocole ou environnement client–serveur désigne un mode de transmission d'information (souvent à travers un réseau) entre plusieurs programmes ou processus : l'un, qualifié de client, envoie des requêtes ; l'autre, qualifié de serveur, attend les requêtes des clients et y répond. Le serveur offre ici un service au client. Par extension, le client désigne souvent l'ordinateur sur lequel est exécuté le logiciel client, et le serveur, l'ordinateur sur lequel est exécuté le logiciel serveur.
Problème des généraux byzantinsEn informatique, le problème des généraux byzantins est une métaphore qui traite de la remise en cause de la fiabilité des transmissions et de l'intégrité des interlocuteurs. La question est donc de savoir comment, et dans quelle mesure, il est possible de prendre en compte une information dont la source ou le canal de transmission est suspect. La solution implique l'établissement d'un algorithme (d'une stratégie) adapté. Ce problème a été traité en profondeur pour la première fois dans l'article The Byzantine Generals Problem publié en 1982.