Publication

Magnons, worms and nanogratings in artificial magnetic quasicrystals

Sho Watanabe
2021
Thèse EPFL
Résumé

Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless communication technologies. A wavelength of magnons is orders of magnitude shorter than that of electromagnetic waves at the same frequency. Therefore, wave-based computing with magnons would be promising for the next generation information technology. For the optimized information processing, artificial magnetic media have the potential to offer advanced controls of SWs. A magnonic crystal, consisting of a periodically arranged nanomagnets, provides a tailored magnon band structure. Periodic magnonic grating couplers (MGCs) efficiently convert centimeter-scaled microwaves to sub-100 nm wavelength SWs. Artificial spin ices (ASIs) are expected to offer reprogrammable magnetization configurations. However, the studies on artificial magnetic materials based on the quasicrystalline and aperiodic arrangement are in their infancy. A quasicrystal, a long range ordered material with a lack of translational invariance, exhibits manifold rotational symmetry. The reciprocal vectors associated with the quasicrystal densely fill out all reciprocal space. These exotic properties would be advantageous for the control of SWs. During my PhD study, I explored SW properties in two dimensional (2D) artificial magnetic quasicrystals (AMQs) to understand the effect of aperiodicity on magnetic properties by means of broadband SW spectroscopy, inelastic light scattering spectroscopy, X-ray magnetic circular dichroism and micromagnetic simulation. By nanofabrication, AMQs made of different magnetic materials were created based on Penrose P2, P3 and Ammann tilings. First, we fabricated AMQs based on aperiodically arranged nanoholes etched into ferromagnetic thin films. Angular-dependent SW spectra exhibited tenfold rotational symmetry reflecting the lattice symmetry of the quasicrystalline nanohole arrangement. Intriguingly, worm-like nanochannels, each exhibiting different SW states, were generated in the AMQs. Our findings imply that the nanohole-based AMQ would become a new class of dense-wavelength division multiplexer. AMQs based on low damping Yttrium iron garnet (YIG) allowed for omnidirectional SW emission thanks to the unconventional rotational symmetry of the quasicrystal. Absorption spectra exhibited forbidden frequency gap openings and a corresponding modification of the magnon density of states, indicating the formation of a magnonic band structure. MGCs, prepared from aperiodically arranged ferromagnetic nanopillars on YIG thin films, allowed also for omnidirectional SW emission with a broad range of wave vectors. The constructive/destructive interference of SWs excited by two emitters allowed for a binary 1/0 output operation. ASIs composed of interconnected ferromagnetic nanobars were found to show non-stochastic switching relevant for reconfigurable functionalities. An ASI integrated on a YIG film showed MGC modes and SW channeling with the presence of an external field. The SW spectra at remnant state exhibited reprogrammable characteristics depending on the magnetic field history. Our study on AMQs is important for the fundamental understanding of quasicrystals as well as fabrication of future magnonic devices targeting at information processing by wave-based computing system on the nanoscale.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Métamatériau
En physique, en électromagnétisme, le terme métamatériau désigne un matériau composite artificiel qui présente des propriétés électromagnétiques qu'on ne retrouve pas dans un matériau naturel. Il s'agit en général de structures périodiques, diélectriques ou métalliques, qui se comportent comme un matériau homogène n'existant pas à l'état naturel. Il existe plusieurs types de métamatériaux en électromagnétisme, les plus connus étant ceux susceptibles de présenter à la fois une permittivité et une perméabilité négatives.
Tunable metamaterial
A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave (EM wave) interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation.
Champ magnétique
En physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Afficher plus
Publications associées (124)

Spin-Reorientation-Driven Linear Magnetoelectric Effect in Topological Antiferromagnet Cu3TeO6

Helmuth Berger

The search for new materials for energy -efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitat ...
Amer Physical Soc2024

Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces

Dirk Grundler, Andrea Mucchietto, Korbinian Baumgärtl

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...
2024

Optothermal shaping of lamb waves with square and spiral phase fronts

Romain Christophe Rémy Fleury, Janez Rus, Aleksi Antoine Bossart

We introduce a Lamb-wave medium with tunable propagation velocities, which are controlled by a two-dimensional heating pattern produced by a laser beam. We utilized it to demonstrate that waves in an appropriately designed medium can propagate in the form ...
2024
Afficher plus
MOOCs associés (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus