Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Accurate mapping of the functional interactions between remote brain areas with resting-state functional magnetic resonance imaging requires the quantification of their underlying dynamics. In conventional methodological pipelines, a spatial scale of interest is first selected and dynamic analysis then proceeds at this hypothesised level of complexity. If large-scale functional networks or states are studied, more local regional rearrangements are then not described, potentially missing important neurobiological information. Here, we propose a novel mathematical framework that jointly estimates resting-state functional networks and spatially more localised cross-regional modulations. To do so, the changes in activity of each brain region are modelled by a logistic regression including co-activation coefficients (reflective of network assignment, as they highlight simultaneous activations across areas) and causal interplays (denoting finer regional cross-talks, when one region active at time t modulates the t to t + 1 transition likelihood of another area). A two-parameter l1