Numerical Methods for First and Second Order Fully Nonlinear Partial Differential Equations
Publications associées (345)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises proble ...
The efficient and accurate QR decomposition for matrices with hierarchical low-rank structures, such as HODLR and hierarchical matrices, has been challenging. Existing structure-exploiting algorithms are prone to numerical instability as they proceed indi- ...
Modeling wave propagation in highly heterogeneous media is of prime importance in engineering applications of diverse nature such as seismic inversion, medical imaging or the design of composite materials. The numerical approximation of such multiscale phy ...
In this thesis, we consider the numerical approximation of high order geometric Partial Differential Equations (PDEs). We first consider high order PDEs defined on surfaces in the 3D space that are represented by single-patch tensor product NURBS. Then, we ...
In this paper we consider, from the numerical point of view, a thermoelastic diffusion porous problem. This is written as a coupled system of two hyperbolic equations, for the displacement and porosity fields, and two parabolic equations, for the temperatu ...
A new algorithm to solve numerically the evolution of empirical shell models of polarizable systems is presented. It employs constrained molecular dynamics to satisfy exactly, at each time step, the crucial condition that the gradient of the potential with ...
In this work we study, from the numerical point of view, a problem involving one-dimensional thermoelastic mixtures with two different temperatures; that is, when each component of the mixture has its own temperature. The mechanical problem consists of two ...
Due to the rapid growth of data and computational resources, distributed optimization has become an active research area in recent years. While first-order methods seem to dominate the field, second-order methods are nevertheless attractive as they potenti ...
We explore the use of radial basis functions (RBF) in the weighted essentially non-oscillatory (WENO) reconstruction process used to solve hyperbolic conservation laws, resulting in a numerical method of arbitrarily high order to solve problems with discon ...
We investigate the combination of Isogeometric Analysis (IGA) and proper orthogonal decomposition (POD) based on the Galerkin method for model order reduction of linear parabolic partial differential equations. For the proposed fully discrete scheme, the a ...