Protocole de communicationDans les réseaux informatiques et les télécommunications, un protocole de communication est une spécification de plusieurs règles pour un type de communication particulier. Initialement, on nommait protocole ce qui est utilisé pour communiquer sur une même couche d'abstraction entre deux machines différentes. Par extension de langage, on utilise parfois ce mot aussi aujourd'hui pour désigner les règles de communication entre deux couches sur une même machine.
Advanced Audio CodingAdvanced Audio Coding (AAC, « encodage audio avancé ») est un algorithme de compression audio avec perte de données ayant pour but d’offrir un meilleur rapport qualité sur débit binaire que le format plus ancien MPEG-1/2 Audio Layer 3, plus connu sous le nom de MP3. Pour ces qualités, il est choisi par différentes entreprises dont Apple ou RealNetworks. La RNT (Radio numérique terrestre utilise le système de radio diffusion DAB+ (version améliorée du DAB, Digital Audio Broadcasting) qui intègre une version avancée du codec AAC : HE-AAC version 2, aussi appelé eAAC+, et défini dans la norme MPEG-4 Part 3.
Gradient boostingGradient boosting is a machine learning technique used in regression and classification tasks, among others. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest.
Bootstrap aggregatingLe bootstrap aggregating, également appelé bagging (de bootstrap aggregating), est un meta-algorithme d'apprentissage ensembliste conçu pour améliorer la stabilité et la précision des algorithmes d'apprentissage automatique. Il réduit la variance et permet d'éviter le surapprentissage. Bien qu'il soit généralement appliqué aux méthodes d'arbres de décision, il peut être utilisé avec n'importe quel type de méthode. Le bootstrap aggregating est un cas particulier de l'approche d'apprentissage ensembliste.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Duplex (canal de communication)En télécommunications, un canal de communication duplex est un canal de communication qui transporte l'information dans les deux sens (bidirectionnel). Selon que l'information peut être transportée simultanément dans les deux sens ou non, on parle respectivement de canal full-duplex ou half-duplex (également appelé à l'alternat). Un canal qui transporte l'information dans un seul sens est appelé simplex (monodirectionnel). Un exemple de canal simplex est la radiodiffusion telle la radio FM.
Communication non verbaleLa communication non verbale (ou langage du corps) désigne tout échange n'ayant pas recours à la parole. Elle ne repose pas sur les mots (pratiques linguistiques), mais sur plusieurs champs extralinguistiques correspondant à des signaux sociaux ou catégories fonctionnelles, objets d'études de différentes disciplines : communication para-verbale (communication vocale comprenant les traits prosodiques, les onomatopées, le rire, la toux, et parfois distinguée de la communication non verbale) analysée par la , gestes (mouvements du corps, gestuelle, actions et réactions) et expressions faciales (dont les micro-expressions) étudiés par la kinésique et la gestique, contact visuel et rôle du regard (clin d'œil complice, regard désapprobateur ou sceptique.
Visual temporal attentionVisual temporal attention is a special case of visual attention that involves directing attention to specific instant of time. Similar to its spatial counterpart visual spatial attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.