KPC: Learning-Based Model Predictive Control with Deterministic Guarantees
Publications associées (92)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Optimization is important in science and engineering as a way of finding ”optimal” situations, designs or operating conditions. Optimization is typically performed on the basis of a mathematical model of the process under investigation. In practice, optimi ...
We propose a partition-based state estimator for linear discrete-time systems composed by coupled subsystems affected by bounded disturbances. The architecture is distributed in the sense that each subsystem is equipped with a local state estimator that ex ...
Receding horizon control requires the solution of an optimization problem at every sampling instant. We present efficient interior point methods tailored to convex multistage problems, a problem class which most relevant MPC problems with linear dynamics c ...
We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which a ...
In this paper we propose a novel partition-based state estimator for linear discrete-time systems composed of physically coupled subsystems affected by bounded disturbances. The proposed scheme is distributed in the sense that each local state estimator ex ...
Receding horizon control requires the solution of an optimization problem at every sampling instant. We present efficient interior point methods tailored to convex multistage problems, a problem class which most relevant MPC problems with linear dynamics c ...
This work develops a decentralized adaptive strategy for throughput maximization over peer-to-peer (P2P) networks. The adaptive strategy can cope with changing network topologies, is robust to network disruptions, and does not rely on central processors. T ...
This paper proposes a state estimator for large-scale linear systems described by the interaction of state-coupled subsystems affected by bounded disturbances. We equip each subsystem with a Local State Estimator (LSE) for the reconstruction of the subsyst ...
We propose a working set based approximate subgradient descent algorithm to minimize the margin-sensitive hinge loss arising from the soft constraints in max-margin learning frameworks, such as the structured SVM. We focus on the setting of general graphic ...
The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions ...