Robust Learning-Augmented Caching: An Experimental Study
Publications associées (47)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learni ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances ...
Over the past few years, there have been fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. The amount of annotated data drastically increased and supervised deep discriminative models exceed ...
While annotated images for change detection using satellite imagery are scarce and costly to obtain, there is a wealth of unlabeled images being generated every day. In order to leverage these data to learn an image representation more adequate for change ...
Lossy gradient compression has become a practical tool to overcome the communication bottleneck in centrally coordinated distributed training of machine learning models. However, algorithms for decentralized training with compressed communication over arbi ...
Time series classification (TSC) is an important and challenging problem in machine learning. In this work, we tackle the problem of TSC by first applying a Bidirectional Encoder Representations from Transformers (BERT) model, and then applying a convoluti ...
In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in th ...
In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on th ...