Supervised Learning With Perceptual Similarity for Multimodal Gene Expression Registration of a Mouse Brain Atlas
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Stereo reconstruction is a problem of recovering a 3d structure of a scene from a pair of images of the scene, acquired from different viewpoints. It has been investigated for decades and many successful methods were developed.The main drawback of these ...
Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic perfor ...
In this paper, we provide a Banach-space formulation of supervised learning with generalized total-variation (gTV) regularization. We identify the class of kernel functions that are admissible in this framework. Then, we propose a variation of supervised l ...
Background Periventricular leukoaraiosis may be an important pathological change in postural instability gait disorder (PIGD), a motor subtype of Parkinson's disease (PD). Clinical diagnosis of PIGD may be challenging for the general neurologist. Purpose T ...
Time series constitute a challenging data type for machine learning algorithms, due to their highly variable lengths and sparse labeling in practice. In this paper, we tackle this challenge by proposing an unsupervised method to learn universal embeddings ...
This paper describes our participation in the shared evaluation campaign of MexA3T 2020. Our main goal wasto evaluate a Supervised Autoencoder (SAE) learning algorithm in text classification tasks. For our experiments,we used three different sets of featur ...
Macroscopic data aggregated from microscopic events are pervasive in machine learning, such as country-level COVID-19 infection statistics based on city-level data. Yet, many existing approaches for predicting macroscopic behavior only use aggregated data, ...
In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on th ...
Learning general image representations has proven key to the success of many computer vision tasks. For example, many approaches to image understanding problems rely on deep networks that were initially trained on ImageNet, mostly because the learned featu ...
In this paper, we explore various approaches for semi-
supervised learning in an end-to-end automatic speech recog-
nition (ASR) framework. The first step in our approach in-
volves training a seed model on the limited amount of labelled
data. Additional u ...