Nombre leptoniqueLe est, en physique des particules, un nombre quantique invariant (tout comme le nombre baryonique) attribué aux particules et faisant l'objet d'une conservation lors d'une réaction nucléaire. Le nombre leptonique d'un système est défini comme la différence entre les nombres de leptons et d'antileptons qu'il contient : Le nombre leptonique est aussi défini comme la somme de trois nombres quantiques dits nombres leptoniques partiels : Le nombre leptonique vaut +1 pour un lepton, -1 pour un antilepton et 0 pour toute autre particule.
NucléonLe terme nucléon désigne de façon générique les composants du noyau atomique, c'est-à-dire les protons et les neutrons qui sont tous deux des baryons. Le nombre de nucléons par atome est généralement noté « A », et appelé « nombre de masse ». Jusque dans les années 1960, les nucléons étaient considérés comme des particules élémentaires. Il est désormais connu que ce sont des particules composées de quarks et de gluons. Les propriétés de ces particules sont régies en grande partie par l'interaction forte.
Balance (instrument)Une balance, du latin bis (deux fois) et lanx (plateau), est un instrument de mesure qui sert à évaluer des masses par comparaison avec des « poids », dans le langage courant, ou « masses marquées » dont les masses sont connues. Les balances existent depuis l'Antiquité. La balance nécessitant l'utilisation de poids, elle obligea à réglementer le pesage avec le plus grand soin. Les balances ne sont devenues de véritables instruments de précision qu'au .
MatièreEn physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'espace. Les quatre états les plus communs sont l'état solide, l'état liquide, l'état gazeux et l'état plasma. Réciproquement, en physique, tout ce qui a une masse est de la matière. La matière ordinaire qui nous entoure est formée principalement de baryons et constitue la matière baryonique.
Minimal Supersymmetric Standard ModelThe Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.
Neutrinoless double beta decayThe neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle.
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-KibbleEn physique des particules le mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble (BEHHGK, prononcé « Beck »), souvent abrégé (au détriment de certains auteurs) mécanisme de Brout-Englert-Higgs, voire mécanisme de Higgs, introduit indépendamment par François Englert et Robert Brout, par Peter Higgs, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble en 1964, décrit un processus par lequel une symétrie locale de la théorie peut être brisée spontanément, en introduisant un champ scalaire de valeur
Unified field theoryIn physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to the modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields. Classically, however, a duality of the fields is combined into a single physical field.
Équation de MajoranaL'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.