Publication

Foliar respiration is related to photosynthetic, growth and carbohydrate response to experimental drought and elevated temperature

Résumé

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8 degrees C temperature and -45% precipitation in a field experiment with mature pinon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q(10) of 1.6 for pinon and 2.6 for juniper. Pinon foliar R did not respond to the +4.8 degrees C temperatures, but R increased 1.4x for juniper. Across treatments, pinon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than pinon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than pinon. Species responses will be critical in ecosystem response to a warmer climate.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.