Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Public knowledge about the structure of a cryptographic system is a standard assumption in the literature and algorithms are expected to guarantee security in a setting where only the encryption key is kept secret. Nevertheless, undisclosed proprietary cryptographic algorithms still find widespread use in applications both in the civil and military domains. Even though side-channel-based reverse engineering attacks that recover the hidden components of custom cryptosystems have been demonstrated for a wide range of constructions, the complete and practical reverse engineering of AES-128-like ciphers remains unattempted. In this work, we close this gap and propose the first practical reverse engineering of AES-128-like custom ciphers, i.e., algorithms that deploy undisclosed SubBytes, ShiftRows and MixColumns functions. By performing a side-channel-assisted differential power analysis, we show that the amount of traces required to fully recover the undisclosed components are relatively small, hence the possibility of a side-channel attack remains as a practical threat. The results apply to both 8-bit and 32-bit architectures and were validated on two common microcontroller platforms.
Andrea Felice Caforio, Subhadeep Banik