Byzantine Fault-Tolerant Distributed Machine Learning with Norm-Based Comparative Gradient Elimination
Publications associées (59)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
EPFL2022
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
EPFL2023
, ,
The problem of Byzantine resilience in distributed machine learning, a.k.a., Byzantine machine learning, consists in designing distributed algorithms that can train an accurate model despite the presence of Byzantine nodes, i.e., nodes with corrupt data or ...
In this thesis, we explore techniques for addressing the communication bottleneck in data-parallel distributed training of deep learning models. We investigate algorithms that either reduce the size of the messages that are exchanged between workers, or th ...
In this article, we study the problem of Byzantine fault-tolerance in a federated optimization setting, where there is a group of agents communicating with a centralized coordinator. We allow up to f Byzantine-faulty agents, which may not follow a prescr ...
The geometric median, an instrumental component of the secure machine learning toolbox, is known to be effective when robustly aggregating models (or gradients), gathered from potentially malicious (or strategic) users. What is less known is the extent to ...
The variational approach is a cornerstone of computational physics, considering both conventional and quantum computing computational platforms. The variational quantum eigensolver algorithm aims to prepare the ground state of a Hamiltonian exploiting para ...
State-of-the-art training algorithms for deep learning models are based on stochastic gradient descent (SGD). Recently, many variations have been explored: perturbing parameters for better accuracy (such as in Extra-gradient), limiting SGD updates to a sub ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...