Robust Generalization despite Distribution Shift via Minimum Discriminating Information
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep neural networks have achieved impressive results in many image classification tasks. However, since their performance is usually measured in controlled settings, it is important to ensure that their decisions remain correct when deployed in noisy envi ...
This paper addresses intra-client and inter-client covariate shifts in federated learning (FL) with a focus on the overall generalization performance. To handle covariate shifts, we formulate a new global model training paradigm and propose Federated Impor ...
2023
Interactions are ubiquitous in our world, spanning from social interactions between human individuals to physical interactions between robots and objects to mechanistic interactions among different components of an intelligent system. Despite their prevale ...
Recent advances on Vision Transformer (ViT) and its improved variants have shown that self-attention-based networks surpass traditional Convolutional Neural Networks (CNNs) in most vision tasks. However, existing ViTs focus on the standard accuracy and com ...
In this work, we borrow tools from the field of adversarial robustness, and propose a new framework that permits to relate dataset features to the distance of samples to the decision boundary. Using this framework we identify the subspace of features used ...
2020
, ,
As distribution shifts are inescapable in realistic clinical scenarios due to inconsistencies in imaging protocols, scanner vendors, and across different centers, well-trained deep models incur a domain generalization problem in unseen environments. Despit ...
Many robotics problems are formulated as optimization problems. However, most optimization solvers in robotics are locally optimal and the performance depends a lot on the initial guess. For challenging problems, the solver will often get stuck at poor loc ...
Humans can rapidly estimate the statistical properties of groups of stimuli, including their average and variability. But recent studies of so-called Feature Distribution Learning (FDL) have shown that observers can quickly learn even more complex aspects ...
Machine learning (ML) applications are ubiquitous. They run in different environments such as datacenters, the cloud, and even on edge devices. Despite where they run, distributing ML training seems the only way to attain scalable, high-quality learning. B ...
Visual perception is indispensable for many real-world applications. However, perception models deployed in the real world will encounter numerous and unpredictable distribution shifts, for example, changes in geographic locations, motion blur, and adverse ...