Couche transportthumb|Position de la couche transport dans le modèle ISO et dans TCP-IP En réseaux, la couche dite de transport constitue la quatrième couche du modèle OSI. Cette couche regroupe l'ensemble des protocoles chargés de la gestion des erreurs et du contrôle des flux réseaux. Les deux principaux protocoles utilisés sont les protocoles TCP et UDP. Modèle OSI La couche transport gère les communications de bout en bout entre processus. Cette couche est souvent la plus haute couche où on se préoccupe de la correction des erreurs.
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
Data wranglingData wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.
Couche applicationLa couche application est la du modèle OSI. La couche application est surtout, du point de vue du modèle, le point d'accès aux services réseaux. Comme le modèle n'a pas pour rôle de spécifier les applications, il ne spécifie pas de service à ce niveau. La couche d'application représente des données pour l'utilisateur ainsi que du codage et un contrôle du dialogue : des mécanismes de communication offerts aux applications de l'utilisateur.
Loss functions for classificationIn machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). Given as the space of all possible inputs (usually ), and as the set of labels (possible outputs), a typical goal of classification algorithms is to find a function which best predicts a label for a given input .
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Espace d'échelleLa théorie de lEspace d'échelle () est un cadre pour la représentation du signal développé par les communautés de la vision artificielle, du , et du traitement du signal. C'est une théorie formelle pour manipuler les structures de l'image à différentes échelles, en représentant une image comme une famille d'images lissées à un paramètre, la représentation d'espace échelle, paramétrée par la taille d'un noyau lissant utilisé pour supprimer les structures dans les petites échelles. Soit un signal.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Couche sessionLa couche session est la du modèle OSI. Les deux services originaux de la couche session sont la synchronisation des communications (n'importe quel intervenant peut émettre à tout moment) et la gestion des « transactions ». Un service cependant a été rajouté, c'est un mécanisme de correction des erreurs de traitement par restauration d'un état antérieur connu. Les services de transport sont des services de communication point à point, c'est-à-dire avec deux interlocuteurs. Mais le modèle OSI doit aussi convenir aux communications multipoints.
Multilayer switchA multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation. Switching technologies are crucial to network design, as they allow traffic to be sent only where it is needed in most cases, using fast, hardware-based methods. Switching uses different kinds of network switches. A standard switch is known as a layer 2 switch and is commonly found in nearly any LAN.