Publication

Atomistic simulation and electron microscopy to characterize grain boundaries in doped beta-tricalcium phosphate ceramics

Résumé

The limitations and potential complications correlated with autogenous bone grafts have raised interest in the development of synthetic bone graft substitutes. ß-tricalcium phosphate (ß-TCP) is one of the most promising materials for synthetic bone graft substitutes because it is readily resorbed and replaced by new bone. However, even though ß-TCP has been clinically used since 1920, various studies have reported inconsistent biological responses for this bioceramic. This is most likely because the mechanisms by which ß-TCP is resorbed into the human body are still far from being completely understood. In order to better understand the in vivo behavior of ß-TCP, this thesis sets out to explore aspects of grain boundaries and ion-doping in ß-TCP via atomistic simulations and electron microscopy. The knowledge gained from this aims towards achieving a better understanding of how they in turn influence the resorption and healing processes of ß-TCP bone graft substitutes.For correct atomistic simulations, the ß-TCP crystal lattice presents a particular challenge. There is an incommensurate aspect of its structure tied to a specific, partially-filled calcium site in the conventionally-defined unit cell. Before considering the simulations of doped structures and interfaces, detailed atomistic simulations are made in order to study the arrangements of calcium ion occupations of this site, going from the scale of the unit cell up to large supercell systems.A framework is detailed for simulating ß-TCP as interface structures, which allows us to study the distribution of dopants across them. The behavior of Sr ions was investigated using a recently-developed Monte Carlo method. The preliminary results of this framework give access to interfacial energies and enthalpies of segregation for interface structures. The results suggest that Sr-segregation can be expected for certain ß-TCP grain boundaries but probably not all, and that the relative level of segregation will actually decrease as total dopant concentration in the ceramic is increased. Complementary microstructural characterizations were carried out using analytical electron microscopy. Those identified did not show any apparent segregation.This thesis also involved other electron microscopy analyses of various ß-TCP samples. This was done successfully and the results are highlighted in recent joint publications. Also, high spatial resolution electron microscopy analyses were carried out on a 5.00% Cu-doped sample. We observed the formation of a secondary phase, copper oxide, the presence of which influences the ceramic's biocompatibility, since it is correlated to a strong cytotoxicity that killed osteoclasts during cell culture medium tests. Beyond these secondary phases, this sample showed a uniform distribution of elemental Cu across grains and grain boundaries, similarly to the 5.00% Sr-doped sample.This thesis has developed a methodology for investigating ß-TCP at an atomistic level, from both a structural and microstructural point of view. Further developments and simulations are needed, but the methodology has been shown to be robust and reliable, such that it creates many avenues for future studies. From the electron microscopy front, the beam sensitivity introduced challenges to our investigations, but global powder and ceramic characterization was successful. Further work on how to better sample and characterize grain boundaries in these important biomaterials is needed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (44)
Microscope électronique
thumb|Microscope électronique construit par Ernst Ruska en 1933.thumb|Collection de microscopes électroniques anciens (National Museum of Health & Medicine). Un microscope électronique (ME) est un type de microscope qui utilise un faisceau d'électrons pour illuminer un échantillon et en créer une très agrandie. Il est inventé en 1931 par des ingénieurs allemands. Les microscopes électroniques ont un pouvoir de résolution supérieur aux microscopes optiques qui utilisent des rayonnements électromagnétiques visibles.
Microscopie électronique en transmission
vignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Bone grafting
Bone grafting is a surgical procedure that replaces missing bone in order to repair bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly. Some small or acute fractures can be cured without bone grafting, but the risk is greater for large fractures like compound fractures. Bone generally has the ability to regenerate completely but requires a very small fracture space or some sort of scaffold to do so.
Afficher plus
Publications associées (77)

Quasi-operando Transmission Electron Microscopy Diagnostics for Electrocatalytic Processes in Liquids

Vasiliki Tileli

It is of great interest to the energy community to understand how the mechano-physico-chemical phenomena that eventually lead to device degradation are related to the startup, operation, and shutdown phases. For electrocatalytic systems operating in liquid ...
Swiss Chemical Soc2024

In Situ and Time-Resolved Transmission Electron Microscopy of Nanoscale Processes

Chengcheng Yan

Observing the fast dynamics of nanoscale systems is crucial in order to understand and ultimately control their behavior. Characterizing these dynamic processes requires techniques with atomic spatial resolution and a temporal resolution that matches the t ...
EPFL2023

Early Precipitation Stages of Sigma Phase in Alloy 28 Studied with Scanning Electron Microscopy and Atom Probe Tomography

This study deals with early stages of sigma phase growth in a high end austenitic stainless steel - Alloy 28 (EN 1.4563/UNS N08028). Its precipitation kinetics was followed by a series of heat treatments at 800 degrees C for holding times up to 30 000 s. T ...
2021
Afficher plus
MOOCs associés (22)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.