Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The chemi-ionization of Ar, Kr, N2, H2, and D2 by Ne(3P2) and of Ar, Kr, and N2 by He(3S1) was studied by electron velocity map imaging (e-VMI) in a crossed molecular beam experiment. A curved magnetic hexapole was used to state-select the metastable species. Collision energies of 60 meV were obtained by individually controlling the beam velocities of both reactants. The chemi-ionization of atoms and molecules can proceed along different channels, among them Penning ionization and associative ionization. The evolution of the reaction is influenced by the internal redistribution of energy, which happens at the first reaction step that involves the emission of an electron. We designed and built an e-VMI spectrometer in order to investigate the electron kinetic energy distribution, which is related to the internal state distribution of the ionic reaction products. The analysis of the electron kinetic energy distributions allows an estimation of the ratio between the two-reaction channel Penning and associative ionization. In the molecular cases the vibrational or electronic excitation enhanced the conversion of internal energy into the translational energy of the forming ions, thus influencing the reaction outcome.
Klaus Kern, Stephan Rauschenbach, Sabine Abb, Sven Alexander Szilagyi, Hannah Julia Ochner