Convergence properties of a decentralized Kalman filter
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We rst investigate regularized algorithms adapted to a projection operator on a closed subspace ...
We introduce in this paper the recursive Hessian sketch, a new adaptive filtering algorithm based on sketching the same exponentially weighted least squares problem solved by the recursive least squares algorithm. The algorithm maintains a number of sketch ...
We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. We present the first algorithm that a ...
At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit [12, 9], thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: ...
We investigate regularized algorithms combining with projection for least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space. We prove convergence results with respect to variants of n ...
In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral/regularized algorithms, including ridge regressi ...
We consider the optimization of a quadratic objective function whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. We present the first algorithm that a ...
Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate func- tions based on random sampling according to a given probability measure. Recent work has shown th ...
Inspired by the BBM formula and by work of G. Leoni and D. Spector, we analyze the asymptotic behavior of two sequences of convex nonlocal functionals (Psi(n)(u)) and (Phi(n)(u)) which converge formally to the BV-norm of u. We show that pointwise convergen ...
Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that ...