Figlearn: Filter And Graph Learning Using Optimal Transport
Publications associées (35)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A fundamental problem in signal processing is to design computationally efficient algorithms to filter signals. In many applications, the signals to filter lie on a sphere. Meaningful examples of data of this kind are weather data on the Earth, or images o ...
Graph spectral analysis can yield meaningful embeddings of graphs by providing insight into distributed features not directly accessible in nodal domain. Recent efforts in graph signal processing have proposed new decompositions-for example, based on wavel ...
MIT PRESS2019
,
In this work we consider the problem of learning an Erdos-Renyi graph over a diffusion network when: i) data from only a limited subset of nodes are available (partial observation); ii) and the inferential goal is to discover the graph of interconnections ...
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems ha ...
State-of-the-art data analysis tools have to deal with high-dimensional data. Fortunately, the inherent dimensionality of data is often much smaller, as it has an internal structure limiting its degrees of freedom. In most cases, this structure can be appr ...
An emerging way to deal with high-dimensional non-euclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This work aims to elevate th ...
Institute of Electrical and Electronics Engineers2018
Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochasticity i ...
Institute of Electrical and Electronics Engineers2017
Though deep learning (DL) algorithms are very powerful for image processing tasks, they generally require a lot of data to reach their full potential. Furthermore, there is no straightforward way to impose various properties, given by the prior knowledge a ...
The construction of a meaningful graph topology plays a crucial role in the effective representation, processing, analysis, and visualization of structured data. When a natural choice of the graph is not readily available from the data sets, it is thus des ...
The analysis of signals on complex topologies modeled by graphs is a topic of increasing importance. Decompositions play a crucial role in the representation and processing of such information. Here, we propose a new tight frame design that is adapted to a ...
Institute of Electrical and Electronics Engineers2016