Transformeur génératif pré-entraînédroite|vignette| Architecture du modèle GPT Le transformeur génératif pré-entraîné (ou GPT, de l’anglais generative pre-trained transformer) est une famille de modèles de langage généralement formée sur un grand corpus de données textuelles pour générer un texte de type humain. Il est construit en utilisant plusieurs blocs de l'architecture du transformeur. Ils peuvent être affinés pour diverses tâches de traitement du langage naturel telles que la génération de texte, la traduction de langue et la classification de texte.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Labeled dataLabeled data is a group of samples that have been tagged with one or more labels. Labeling typically takes a set of unlabeled data and augments each piece of it with informative tags. For example, a data label might indicate whether a photo contains a horse or a cow, which words were uttered in an audio recording, what type of action is being performed in a video, what the topic of a news article is, what the overall sentiment of a tweet is, or whether a dot in an X-ray is a tumor.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Test ZEn statistique, un test Z est un terme générique désignant tout test statistique dans lequel la statistique de test suit une loi normale sous l'hypothèse nulle. On considère un n-échantillon avec et un risque . Si l'on teste La statistique de test sous l'hypothèse nulle est : qui suit une loi normale Si , la réalisation de la statistique de test, est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle. Si l'on teste Si est supérieur au quantile d'ordre de la loi alors on rejette l'hypothèse nulle.