Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
Machine-readable semantic knowledge in the form of taxonomies (i.e., a collection of is-a edges) has proved to be beneficial in an array of NLP tasks including inference, textual entailment, question answering and information extraction. Such widespread ut ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
Domain language model adaptation consists in re-estimating probabilities of a baseline LM in order to better match the specifics of a given broad topic of interest. To do so, a common strategy is to retrieve adaptation texts from the Web based on a given d ...
Word embeddings resulting from neural language models have been shown to be a great asset for a large variety of NLP tasks. However, such architecture might be difficult and time-consuming to train. Instead, we propose to drastically simplify the word embe ...
This paper introduces a query refinement method applied to questions asked by users to a system during a meeting or a conversation that they have with other users. To answer the questions, the proposed method leverages the local context of the conversation ...
The bag-of-words (BOW) model is the common approach for classifying documents, where words are used as feature for training a classifier. This generally involves a huge number of features. Some techniques, such as Latent Semantic Analysis (LSA) or Latent D ...
In this thesis, we propose novel solutions to similarity learning problems on collaborative networks. Similarity learning is essential for modeling and predicting the evolution of collaborative networks. In addition, similarity learning is used to perform ...
Domain language model adaptation consists in re-estimating probabilities of a baseline LM in order to better match the specifics of a given broad topic of interest. To do so, a common strategy is to retrieve adaptation texts from the Web based on a given d ...
Domain adaptation of a language model aims at re-estimating word sequence probabilities in order to better match the peculiarities of a given broad topic of interest. To achieve this task, a common strategy consists in retrieving adaptation texts from the ...