A Neural Primitive model with Sensorimotor Coordination for Dynamic Quadruped Locomotion with Malfunction Compensation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Amphibious animals adapt their body coordination to compensate for changing substrate properties as they transition between terrestrial and aquatic environments. Using behavioural experiments and mathematical modelling of the amphibious centipede Scolopend ...
Dynamic locomotion on unstructured and uneven terrain is a challenging task in legged robotics. Especially when it comes to slippery ground conditions, common state estimation and control algorithms suffer from the usual no-slip assumption. In fact, there ...
Abstract: We present an algorithm that generates walking motions for quadruped robots without the use of an explicit footstep planner by simultaneously optimizing over both the Center of Mass (CoM) trajectory and the footholds. Feasibility is achieved by i ...
This work investigates the usage of compliant universal grippers as a novel foot design for legged locomotion. The method of jamming of granular media in the universal grippers is characterized by having two distinct states: a soft, fluid-like state which ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Locomotion planning for legged systems requires reasoning about suitable contact schedules. The contact sequence and timings constitute a hybrid dynamical system and prescribe a subset of achievable motions. State-of-the-art approaches cast motion planning ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
Compliance of the body has a crucial role on locomotion performance. The levels and the distribution of compliance should be well tuned to obtain efficient gait. The leg stiffness changes significantly even during different phases of a single gait cycle. T ...
We present a single trajectory optimization formulation for legged locomotion that automatically determines the gait sequence, step timings, footholds, swing-leg motions, and six-dimensional body motion over nonflat terrain, without any additional modules. ...