Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In visual crowding, the perception of a target deteriorates in the presence of nearby flankers. Traditionally, target-flanker interactions have been considered as local, mostly deleterious, low-level, and feature specific, occurring when information is pooled along the visual processing hierarchy. Recently, a vast literature of high-level effects in crowding (grouping effects and face-holistic crowding in particular) led to a different understanding of crowding, as a global, complex, and multilevel phenomenon that cannot be captured or explained by simple pooling models. It was recently argued that these high-level effects may still be captured by more sophisticated pooling models, such as the Texture Tiling model (TTM). Unlike simple pooling models, the high-dimensional pooling stage of the TTM preserves rich information about a crowded stimulus and, in principle, this information may be sufficient to drive high-level and global aspects of crowding. In addition, it was proposed that grouping effects in crowding may be explained by post-perceptual target cueing. Here, we extensively tested the predictions of the TTM on the results of six different studies that highlighted high-level effects in crowding. Our results show that the TTM cannot explain any of these high-level effects, and that the behavior of the model is equivalent to a simple pooling model. In addition, we show that grouping effects in crowding cannot be predicted by post-perceptual factors, such as target cueing. Taken together, these results reinforce once more the idea that complex target-flanker interactions determine crowding and that crowding occurs at multiple levels of the visual hierarchy.
Silvestro Micera, Daniela De Luca
,
Michael Herzog, Ben Henrik Lönnqvist, Adrien Christophe Doerig, Alban Bornet