Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The paradigm of second-order phase transitions (PTs) induced by spontaneous symmetry breaking (SSB) in thermal and quantum systems is a pillar of modern physics that has been fruitfully applied to out-of-equilibrium open quantum systems. Dissipative phase transitions (DPTs) of second order are often connected with SSB, in close analogy with well-known thermal second-order PTs in closed quantum and classical systems. That is, a second-order DPT should disappear by preventing the occurrence of SSB. Here, we prove this statement to be wrong, showing that, surprisingly, SSB is not a necessary condition for the occurrence of second-order DPTs in out-of-equilibrium open quantum systems. We analytically prove this result using the Liouvillian theory of DPTs, and demonstrate this anomalous transition in a paradigmatic laser model, where we can arbitrarily remove SSB while retaining criticality, and on a Z (2)-symmetric model of a two-photon Kerr resonator. This new type of PT cannot be interpreted as a 'semiclassical' bifurcation, because, after the DPT, the system steady state remains unique.