BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration
Publications associées (74)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
The successes of deep learning for semantic segmentation can in be, in part, attributed to its scale: a notion that encapsulates the largeness of these computational architectures and the labeled datasets they are trained on. These resource requirements hi ...
Current transformer-based skeletal action recognition models tend to focus on a limited set of joints and low-level motion patterns to predict action classes. This results in significant performance degradation under small skeleton perturbations or changin ...
Designing novel materials is greatly dependent on understanding the design principles, physical mechanisms, and modeling methods of material microstructures, requiring experienced designers with expertise and several rounds of trial and error. Although rec ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Touchscreens are nowadays the preferred choice for user interfaces in consumer electronics. Significant technological advances have been made in terms of touch sensing and visual quality. However, the haptic feedback offered by commercial products is still ...
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
This paper investigates the potential impact of deep generative models on the work of creative professionals. We argue that current generative modeling tools lack critical features that would make them useful creativity support tools, and introduce our own ...