Publication

New methods for structure determination and speciation by NMR crystallography

Martins Balodis
2022
Thèse EPFL
Résumé

NMR crystallography has been around for half a century, but with the advent of NMR crystal structure determination protocols in the last decade it has shown perspectives that were not seen before. Amalgamation of NMR and crystal structure determination has been successful in predicting crystal structures de novo. Still, there are many challenges to make these methods universal and applicable to any molecular crystal at any stage of a structural investigation. Larger molecules still take too much time to be solved by the current methods up to the point of being impossible. Amorphous structures of molecular solids had not been solved in general for any method. Reaction mechanisms and structures involved in the formation of solids are still challenging to investigate due to their fast nature and the low concentration of the reaction intermediates in solution.The current NMR crystal structure determination protocols involve NMR at the final step of the candidate crystal structure selection, but one of the biggest bottlenecks is actually at the first steps of structure determination that involve selecting gas phase conformers that will later be used in the trial crystal structures. Here, we develop a series of new NMR methods to address these bottlenecks. We show how unambiguous constraints extracted from solid state NMR experiments can help to significantly reduce the initial conformer space and help to select conformers that correspond more closely to what is found in the crystal structure. We then show how machine learned chemical shifts can be included in the crystal structure determination process from the start, and we determine the crystal structure of two compounds, one of whom is polymorphic. Then, we show how machine learned shifts in combination with molecular dynamics can be used to solve the atomic level structure of an amorphous compound yielding insights into the hydrogen bonding and stabilization of the amorphous form. To further aid crystal structure determination, we present a new method to assign spectra based on machine learned chemical shifts and propose a new database for small organic molecular crystals that would help in the future crystallographic investigations. Finally, we investigate carbonate speciation by using dissolution DNP.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Cristallographie aux rayons X
La cristallographie aux rayons X, radiocristallographie ou diffractométrie de rayons X (DRX, on utilise aussi souvent l'abréviation anglaise XRD pour X-ray diffraction) est une technique d'analyse fondée sur la diffraction des rayons X par la matière, particulièrement quand celle-ci est cristalline. La diffraction des rayons X est une diffusion élastique, c'est-à-dire sans perte d'énergie des photons (longueurs d'onde inchangées), qui donne lieu à des interférences d'autant plus marquées que la matière est ordonnée.
Structure cristalline
La structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
Cristal liquide
Un cristal liquide est un état de la matière qui combine des propriétés d'un liquide ordinaire et celles d'un solide cristallisé. On exprime son état par le terme de « mésophase » ou « état mésomorphe » (du grec « de forme intermédiaire »). La nature de la mésophase diffère suivant la nature et la structure du mésogène, molécule à l'origine de la mésophase, ainsi que des conditions de température, de pression et de concentration. thumb|Rudolf Virchow.
Afficher plus
Publications associées (87)

NMR Crystallography in the Big Data Era: New Methods and Applications Powered by Machine Learning

Manuel Cordova

Structure determination of materials is key to understanding their physical properties. While single-crystal X-ray diffraction is the gold standard for structures displaying long-range order, many materials of interest are polycrystalline and/or disordered ...
EPFL2023

Atomic-level structure determination of amorphous molecular solids by NMR

David Lyndon Emsley, Arthur César Pinon, Pinelopi Moutzouri, Manuel Cordova

Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder ...
Berlin2023

A data-driven interpretation of the stability of organic molecular crystals

Michele Ceriotti, Edgar Albert Engel, Maria Pakhnova

Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fr ...
ROYAL SOC CHEMISTRY2023
Afficher plus
MOOCs associés (14)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.