Publication

Self-supervised Pre-training Enhances Change Detection in Sentinel-2 Imagery

Publications associées (74)

Robust machine learning for neuroscientific inference

Steffen Schneider

Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
EPFL2024

Few-shot Learning for Efficient and Effective Machine Learning Model Adaptation

Arnout Jan J Devos

Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
EPFL2024

Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange

Sabine Süsstrunk, Mathieu Salzmann, Tong Zhang, Yi Wu

In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can creat ...
2024

Multi-temporal forest monitoring in the Swiss Alps with knowledge-guided deep learning

Devis Tuia, Gaston Jean Lenczner, Thiên-Anh Claris Nguyen, Marc Conrad Russwurm

Monitoring forests, in particular their response to climate and land use change, requires studying long time scales. While efficient deep learning methods have been developed to process short time series of satellite imagery, leveraging long time series of ...
Elsevier Science Inc2024

Learning Informative Health Indicators Through Unsupervised Contrastive Learning

Olga Fink

Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault d ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Deep Learning Generalization with Limited and Noisy Labels

Mahsa Forouzesh

Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023

MULTI-TASK CURRICULUM LEARNING FOR PARTIALLY LABELED DATA

Jiancheng Yang, Stanislav Lukyanenko

Incomplete labels are common in multi-task learning for biomedical applications due to several practical difficulties, e.g., expensive annotation efforts by experts, limit of data collection, different sources of data. A naive approach to enable joint lear ...
New York2023

Self-Supervised Learning for Patient Stratification and Survival Analysis in Computational Pathology: An Application to Colorectal Cancer

Christian Robert Abbet

Over the years, clinical institutes accumulated large amounts of digital slides from resected tissue specimens. These digital images, called whole slide images (WSIs), are high-resolution tissue snapshots that depict the complex interaction of cells at the ...
EPFL2023

Leveraging Unlabeled Data to Track Memorization

Patrick Thiran, Mahsa Forouzesh, Hanie Sedghi

Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
2023

Supervised learning and inference of spiking neural networks with temporal coding

Ana Stanojevic

The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
EPFL2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.