Graph labelingIn the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph G = (V, E), a vertex labelling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph. Likewise, an edge labelling is a function of E to a set of labels. In this case, the graph is called an edge-labeled graph. When the edge labels are members of an ordered set (e.
Graphe arête-connexeEn théorie des graphes, un graphe k-arête-connexe est un graphe connexe qu'il est possible de déconnecter en supprimant k arêtes et tel que ce k soit minimal. Il existe donc un ou plusieurs ensembles de k arêtes dont la suppression rende le graphe déconnecté, mais la suppression de k-1 arêtes, quelles qu'elles soient, le fait demeurer connexe. Un graphe régulier de degré k est au plus k-arête-connexe et k-sommet-connexe. S'il est effectivement k-arête-connexe et k-sommet-connexe, il est qualifié de graphe optimalement connecté.
Community organizingLe community organizing décrit le processus par lequel des gens vivant à proximité les uns des autres construisent une organisation pour avoir plus de pouvoir et mieux faire valoir leurs intérêts communs face aux institutions publiques, aux entreprises, aux propriétaires dont les décisions impactent leur vie. Il a été popularisé par Saul Alinsky généralement considéré comme son père fondateur via ses deux apports majeurs: la formalisation de la fonction de community organizer, et l'idée de sortir les principes d'organisation, d'action et de négociation collectives des usines pour les appliquer dans les quartiers.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
CommunautéUne communauté est un groupe humain dont les membres sont unis par un lien social. En biologie une communauté représente un système au sein duquel des organismes vivants partagent un environnement commun et interagissent. La notion de communauté est également un concept du droit qui désigne un groupe de personnes possédant et jouissant de façon indivise d'un patrimoine en commun. En France, s'oppose traditionnellement à celui de société et d'association qui reposent sur un pacte ou une convention volontairement formée par ses membres.
Feedback arc setvignette|Ce graphe orienté n'a pas de circuits: il n'est pas possible de partir d'un sommet quelconque et de revenir à ce même point, en suivant les connexions dans la direction indiquée par les flèches. En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG).
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Community structureIn the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed.
CographeUn cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.