Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of time-independent and Floquet open quantum systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
EPFL2024
, ,
We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...
Amer Physical Soc2024
Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
We introduce a model-independent method for the efficient simulation of low-entropy systems, whose dynamics can be accurately described with a limited number of states. Our method leverages the time-dependent variational principle to efficiently integrate ...
Realand imaginary -time quantum state evolutions are crucial in physics and chemistry for exploring quantum dynamics, preparing ground states, and computing thermodynamic observables. On near -term devices, variational quantum time evolution is a promising ...
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
Dissipative Kerr solitons arising from parametric gain in ring microresonators are usually described within a classical mean-field framework. Here, we develop a quantum-mechanical model of dissipative Kerr solitons in terms of the Lindblad master equation ...
Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...
The exceptional points (EPs) of non-Hermitian Hamiltonians (NHHs) are spectral degeneracies associated with coalescing eigenvalues and eigenvectors, which are associated with remarkable dynamical properties. These EPs can be generated experimentally in ope ...