Revealing higher-order light and matter energy exchanges using quantum trajectories in ultrastrong coupling
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Simulating the dynamics and the non-equilibrium steady state of an open quantum system are hard computational tasks on conventional computers. For the simulation of the time evolution, several efficient quantum algorithms have recently been developed. Howe ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2021
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
This thesis is devoted to the investigation of static and dynamic properties of
two different sets of quantum magnets with neutron scattering techniques and
the help of linear spin wave theory.
Both systems are copper-based with spin-1/2, which makes them ...
We propose a Markovian quantum master equation that can describe the Fano effect directly, by assuming a standard cavity quantum electrodynamics system. The framework allows us to generalize the Fano formula, applicable over the weak- and strong-coupling r ...
The past decade has witnessed a quantum revolution in the field of computation, communication and materials investigation. A similar revolution is also occurring for free-electron based techniques, where the classical treatment of a free electron as a poin ...
The possibility to simulate the properties of many-body open quantum systems with a large number of degrees of freedom (d.o.f.) is the premise to the solution of several outstanding problems in quantum science and quantum information. The challenge posed b ...
The hemocyanin protein binds and transports molecular oxygen via two copper atoms at its core. The singlet state of the Cu2O2 core is thought to be stabilised by a superexchange pathway, but detailed in situ computational analysis is complicated by the mul ...
Many-body open quantum systems are exposed to an essentially uncontrollable environment that acts as a source of decoherence and dissipation. As the exact treatment of such models is generally unfeasible, it is favourable to formulate an approximate descri ...
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of materials, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photo ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...