Appareil mobilethumb|Exemple d'un appareil mobile. Un appareil mobile (traduction littérale du terme anglophone « mobile device ») est un appareil informatique portatif utilisable de manière autonome lors d'un déplacement. Les appareils mobiles sont de petite taille — certains peuvent être mis dans les poches. Ils sont typiquement dérivés des téléphones mobiles, et permettent d'accéder au Web, de lire du courrier électronique, de prendre des photos, de jouer à des jeux vidéo, d'écouter de la musique, de regarder des clips vidéo ou bien de télécharger des applications.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Multi-pass compilerA multi-pass compiler is a type of compiler that processes the source code or abstract syntax tree of a program several times. This is in contrast to a one-pass compiler, which traverses the program only once. Each pass takes the result of the previous pass as the input, and creates an intermediate output. In this way, the (intermediate) code is improved pass by pass, until the final pass produces the final code. Multi-pass compilers are sometimes called wide compilers, referring to the greater scope of the passes: they can "see" the entire program being compiled, instead of just a small portion of it.
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Analyse de la complexité des algorithmesvignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Best, worst and average caseIn computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.