Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries
Publications associées (48)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sodium-nickel-chloride batteries have a proven track record for backup power applications, but also show great potential for large-scale stationary electricity storage currently dominated by lithium-ion batteries. While lithium-ion cells rely on critical c ...
Electrochemical liquid-phase transmission electron microscopy (TEM) is showing excellent promise in fundamental studies of energy-related processes including lithium-ion battery (LIB) cycling. A key requirement to accurately interpret the measurements and ...
Titanium dioxide of bronze phase (TiO2(B)) has attracted considerable attention as a promising alternative lithium/sodium-ion battery anode due to its excellent operation safety, good reversible capacity, and environmental friendliness. However, several in ...
Electric vehicles (EVs) have gained widespread attention in recent years as the dominant strategy for curbing CO2 emissions through transport electrification. Lithium-ion batteries (LIBs) are currently the most suitable and almost exclusively employed ener ...
Lithium-ion batteries with enhanced rate performance are of crucial importance for practical applications. Extensive studies on the structural design and surface modification of electrode materials with the aim of improving the rate performance have been r ...
Designing solid electrolytes for all-solid-state-batteries that can withstand the extreme electrochemical conditions in contact with an alkali metal anode and a high-voltage cathode is challenging, especially when the battery is cycled beyond 4 V. Here we ...
A model for the electrical double layer at solid-state electrochemical interfaces is reported, shedding some light on the design and optimization of future all-solid-state Li-ion batteries. ...
Dendrite growth and side reactions of Zn metal anodes remain unresolved obstacles for practical application of aqueous Zn ion batteries. Herein, a two-dimensional (2D) organic-inorganic heterostructure with controlled thickness was constructed as a protect ...
Lithium-ion batteries are widely implemented as energy storage devices due to their high energy density and low cost. They enabled modern portable electronics and electric ve-hicles, and are key to manage the integration of intermittent renewable electrici ...
A family of 2D transition metal carbides and nitrides known as MXenes has received increasing attention since the discovery of Ti3C2 in 2011. To date, about 30 different MXenes with well-defined structures and properties have been synthesized, and many mor ...