Publication

Improving Functional Connectome Fingerprinting with Degree-Normalization

Enrico Amico
2022
Article
Résumé

Background: Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional magnetic resonance imaging (fMRI) blood-oxygenation-level dependent time series. The network representation of functional connectivity, called a functional connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Materials and Methods: In this study, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Results: Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate, and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. Discussion: The results suggest that low-dimensional functional fingerprints lie in part in weakly connected sub-networks of the brain and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FC fingerprinting studies.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.