Stop Wasting my FLOPS: Improving the Efficiency of Deep Learning Models
Publications associées (474)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
We experimentally achieve a 19% capacity gain per Watt of electrical supply power in a 12-span link by eliminating gain flattening filters and optimizing launch powers using deep neural networks in a parallel fiber context. (C) 2020 The Authors ...
In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in th ...
Optical diffraction tomography (ODT) provides us 3D refractive index (RI) distributions of transparent samples. Since RI values differ across different materials, they serve as endogenous contrasts. It, therefore, enables us to image without pre-processing ...
p>We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the overparametrized regime where the layer width m is larger than the input dimension d. We conside ...
Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depola ...
Existing techniques to encode spatial invariance within deep convolutional neural networks (CNNs) apply the same warping field to all the feature channels. This does not account for the fact that the individual feature channels can represent different sema ...
Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource co ...
Objective.Mobile Brain/Body Imaging (MoBI) frameworks allowed the research community to find evidence of cortical involvement at walking initiation and during locomotion. However, the decoding of gait patterns from brain signals remains an open challenge. ...
Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we pre ...