Configurable Organic Electrochemical Transistors with Printed Functional Materials for Multiplexed Sweat Analysis
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sweat biomarker analysis has attracted much interest in applications ranging from sports to wearable healthcare. Among all the sweat biomolecules, abnormal urea levels have been linked to several complications, particularly renal dysfunction. Here, we repo ...
SPIE-INT SOC OPTICAL ENGINEERING2023
, , ,
The dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of ...
AMER CHEMICAL SOC2022
Hydrodynamics at the nanoscale involves both fundamental study and application of fluid and mass transport phenomena in nanometer-sized confinements. Nanopores in single-layer graphene can be highly attractive for exploring the molecular transport of gas a ...
EPFL2022
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
EPFL2024
, , ,
Transient electronics hold promise in reducing electronic waste, especially in applications that require only a limited lifetime. While various degradable electronic and physical sensing devices have been proposed, there is growing interest in the developm ...
Nanoporous single-layer graphene (N-SLG) membranes, owing to their single-atom thinness, have the potential to exceed the permeance and selectivity limits of gas separation membranes. However, two key issues in the top-down N-SLG synthesis need to be addre ...
Single-layer graphene (SLG) membranes, hosting molecular-sieving nanopores have been regarded as the ultimate gas separation membranes, attributing to the fact that they are the thinnest possible molecular barrier. However, the expected attractive performa ...
Biologically inspired solid-state nanopores are artificial openings or apertures in thin membranes similar to natural protein ion channels in a lipid bilayer of cell membranes. In solid-state nanopores, a thin insulating membrane with single or multiple po ...
Recently, two-dimensional (2D) material based gas sensing, especially transition metal dichalcogenide-based sensing, has been widely investigated thanks to its room temperature sensing ability. Unlike metal oxide based sensors, 2D material-based sensing ca ...
Gas separation is one of the most important industrial processes and is poised to take a larger role in the transition to renewable energy, e.g., carbon capture and hydrogen purification. Conventional gas separation processes involving cryogenic distillati ...