GraphèneLe graphène est un matériau bidimensionnel cristallin, forme allotropique du carbone dont l'empilement constitue le graphite. Cette définition théorique est donnée par le physicien en 1947. Par la suite, le travail de différents groupes de recherche permettra de se rendre compte que la structure du graphène tout comme ses propriétés ne sont pas uniques et dépendent de sa synthèse/extraction (détaillée dans la section Production).
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Euler sequenceIn mathematics, the Euler sequence is a particular exact sequence of sheaves on n-dimensional projective space over a ring. It shows that the sheaf of relative differentials is stably isomorphic to an -fold sum of the dual of the Serre twisting sheaf. The Euler sequence generalizes to that of a projective bundle as well as a Grassmann bundle (see the latter article for this generalization.) Let be the n-dimensional projective space over a commutative ring A. Let be the sheaf of 1-differentials on this space, and so on.
Equivariant cohomologyIn mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient : If is the trivial group, this is the ordinary cohomology ring of , whereas if is contractible, it reduces to the cohomology ring of the classifying space (that is, the group cohomology of when G is finite.
Classe de Stiefel-WhitneyEn topologie algébrique, les classes de Stiefel-Whitney sont des classes caractéristiques associées aux fibrés vectoriels réels de rang fini. Elles constituent donc un analogue réel des classes de Chern dans le cas complexe. Elles portent les noms de Eduard Stiefel et de Hassler Whitney. Toute classe caractéristique associée aux fibrés vectoriels réels apparaît comme un polynôme en les classes de Stiefel-Whitney.