The Role of Adaptivity in Source Identification with Time Queries
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning on graphs, demonstrating exceptional performance in various domains. However, as GNNs become increasingly popular, new challenges arise. One of the most pressing is the need to ensur ...
In this thesis we present and analyze approximation algorithms for three different clustering problems. The formulations of these problems are motivated by fairness and explainability considerations, two issues that have recently received attention in the ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
Federated learning is a semi-distributed algorithm, where a server communicates with multiple dispersed clients to learn a global model. The federated architecture is not robust and is sensitive to communication and computational overloads due to its one-m ...
Last-mile delivery in the logistics chain contributes to congestion in urban networks due to frequent stops. Crowd-shipping is a sustainable and low-cost alternative to traditional delivery but relies heavily on the availability of occasional couriers. In ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
Machine learning has paved the way for the real-time monitoring of complex infrastructure and industrial systems. However, purely data-driven methods have not been able to learn the underlying dynamics and generalize them to operating conditions that have ...
In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
This work addresses the problem of learning the topology of a network from the signals emitted by the network nodes. These signals are generated over time through a linear diffusion process, where neighboring nodes exchange messages according to the underl ...