A Topological characterisation of Weisfeiler-Leman equivalence classes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study th ...
Graph processing systems are used in a wide variety of fields, ranging from biology to social networks.
Algorithms to mine graphs incur many random accesses, and the sparse nature of the graphs of interest, exacerbates this. As DRAM sustains high bandwidt ...
In this note, we improve on results of Hoppen, Kohayakawa and Lefmann about the maximum number of edge colorings without monochromatic copies of a star of a fixed size that a graph on n vertices may admit. Our results rely on an improved application of an ...
This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attribut ...
The problem of generating a minimal implementation of a given Boolean function is called exact synthesis. The parameter to be minimized is often the total number of gates used for the implementation. The exact synthesis engine is considered an essential to ...
Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph alignment in correlated Erdös-Rény ...
Graph learning methods have recently been receiving increasing interest as means to infer structure in datasets. Most of the recent approaches focus on different relationships between a graph and data sample distributions, mostly in settings where all avai ...
A hallmark of graph neural networks is their ability to distinguish the isomorphism class of their inputs. This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN). MPNN encompasses the maj ...
A sparsifier of a graph G (Bencztir and Karger; Spielman and Teng) is a sparse weighted subgraph (G) over tilde that approximately retains the same cut structure of G. For general graphs, non-trivial sparsification is possible only by using weighted graphs ...
Evans et al. [1] proved the subadditivity of the mutual information in the broadcasting on tree model with binary vertex labels and symmetric edge channels. They raised the question of whether such subadditivity extends to loopy graphs in some appropriate ...