Ultra low quantum decoherence nano-optomechanical systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Optical trapping was used for decades in biotechnology for a broad range of applications. It can be used for remote manipulation, application of pico-Newton forces and even study DNA processes. Nevertheless, optical trapping setups can be cumbersome. In or ...
Mechanically coupled resonators have been applied in the last years to the development of nanomechanical mass-sensors based on the detection of the different vibration modes of the system by measuring on a single resonator. Their sensitivity and capability ...
The study of light-matter interactions holds an important place in physics and many fields of science including biology, medicine and chemistry. Understanding and exploiting light-matter interactions has become ever more relevant in our modern society whic ...
High-stress Si3N4 nanoresonators have become an attractive choice for electro- and optomechanical devices. Membrane resonators can achieve quality factor (Q)frequency (f) products exceeding 10(13) Hz, enabling (in principle) quantum coherent operation at r ...
Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitiv ...
Optical micromanipulation allows the movement and patterning of discrete micro-particles within a liquid environment. However, for manufacturing applications it is desirable to remove the liquid, leaving the patterned particles in place. In this work, we h ...
The precision measurement of position has a long-standing tradition in physics. Cavendish's verification of the universal law of gravitation using a torsion pendulum, Perrin's confirmation of the atomic hypothesis via the precise measurement of the Brownia ...
Placing a nanomechanical object in the evanescent near field of a high-Q optical microcavity gives access to strong gradient forces and quantum-limited displacement readout, offering an attractive platform for both precision sensing technology and basic qu ...
The generation of a quantum fluid of dressed photons at room temperature is experimentally demonstrated in an InGaN microcavity which is divided into two-and one-dimensional sections, resulting in single- and switchable multilevel coherent light emission. ...
We consider a narrow magneto-dipole transition in the Tm-169 atom at the wavelength of 1.14 mu m as a candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock levels [Xe]4f(13)6s(2)(J = 7/2) and [Xe]4f(13 ...