Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
Saveur (physique)La saveur, en physique des particules, est une caractéristique permettant de distinguer différents types de leptons et de quarks, deux sous-familles des fermions. Les leptons se déclinent en trois saveurs et les quarks en six saveurs. Les saveurs permettent de distinguer certaines classes de particules dont les autres propriétés (charge électrique, interactivité) sont similaires. Les dénominations des saveurs ont été introduites par Murray Gell-Mann, baptisant le quark étrange lors de la détection du kaon en 1964.
Dimensional regularizationNOTOC In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini as well as – independently and more comprehensively – by 't Hooft and Veltman for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number of spacetime dimensions. Dimensional regularization writes a Feynman integral as an integral depending on the spacetime dimension d and the squared distances (xi−xj)2 of the spacetime points xi, .
Unitarity gaugeIn theoretical physics, the unitarity gauge or unitary gauge is a particular choice of a gauge fixing in a gauge theory with a spontaneous symmetry breaking. In this gauge, the scalar fields responsible for the Higgs mechanism are transformed into a basis in which their Goldstone boson components are set to zero. In other words, the unitarity gauge makes the manifest number of scalar degrees of freedom minimal. The gauge was introduced to particle physics by Steven Weinberg in the context of the electroweak theory.
Causal perturbation theoryCausal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. It goes back to a seminal work by Henri Epstein and Vladimir Jurko Glaser. When developing quantum electrodynamics in the 1940s, Shin'ichiro Tomonaga, Julian Schwinger, Richard Feynman, and Freeman Dyson discovered that, in perturbative calculations, problems with divergent integrals abounded.
Quartic interactionIn quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime. This article uses the metric signature for Minkowski space.