Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researchers. Such interdisciplinary studies have afforded novel materials, which in many cases are now ready to be brought to the marketplace. Within this framework, the field of perovskite solar cells (PSCs) is currently an important area of research due to their extraordinary light-harvesting properties. In particular, PSCs prepared via facile synthetic procedures, containing hole transport materials (HTMs) with versatile triphenylamine (TPA) structural cores, amenable to functionalization, have become a focus of intense global research activity. To optimize the efficiency of the solar cells to achieve efficiencies closer to rival silicon-based technology, TPA building blocks must exhibit favourable electrochemical, photophysical, and photochemical properties that can be chemically tuned in a rational manner. Although PSCs based on TPA building blocks exhibit attractive properties such as high-power efficiencies, a reduction in their synthetic costs coupled with higher stabilities and environmental considerations still need to be addressed. Considering the above, a detailed summary of the most promising compounds and current methodologies employed to overcome the remaining challenges in this field is provided. The objective of this review is to provide guidance to readers on exploring new avenues for the discovery of efficient TPA derivatives, to aid in the future development and advancement of TPA-based PSCs for commercial applications.
Mohammad Khaja Nazeeruddin, Bin Ding, Xianfu Zhang, Bo Chen, Yao Wang, Chaohui Li, Yan Liu
Mounir Driss Mensi, Masaud Hassan S Almalki, Anwar Qasem M Alanazi
Shaik Mohammed Zakeeruddin, Aïcha Hessler-Wyser, Felix Thomas Eickemeyer, Lukas Pfeifer, Christian Michael Wolff, Rita Therisod, Mostafa Rabie Shlaly Bahr Othman, Hong Zhang, Masaud Hassan S Almalki, Anwar Qasem M Alanazi