FibrilleLes fibrilles définissent deux objets différents, l'un en astronomie, l'autre en biologie En biologie, les fibrilles sont des éléments filiformes (petite fibre ou petit filament fin). Ce terme est utilisé pour décrire des structures formées par certaines protéines, souvent dites "fibrillaires". La protéine souvent décrite dans ce contexte est le collagène. Il existe plusieurs types de collagènes dont certains forment des fibres, donc fibrillaires, et d'autre qui n'en forment pas.
NanoparticuleUne nanoparticule est selon la norme ISO TS/27687 un nano-objet dont les trois dimensions sont à l'échelle nanométrique, c'est-à-dire une particule dont le diamètre nominal est inférieur à environ. D'autres définitions évoquent un assemblage d'atomes dont au moins une des dimensions se situe à l'échelle nanométrique (ce qui correspond au « nano-objet » tel que défini par la norme ISO précitée) ou insistent sur leurs propriétés nouvelles (dues au confinement quantique et à leur surface spécifique) qui n'apparaissent que pour des tailles de moins d'une centaine de nanomètres.
ProprioceptionLa proprioception (formé de proprio-, tiré du latin proprius, « propre », et de [ré]ception), ou sensibilité profonde, désigne la perception, consciente ou non, de la position des différentes parties du corps. Elle fonctionne grâce à de nombreux récepteurs musculaires et ligamentaires et aux voies et centres nerveux impliqués. La proprioception fait partie de la somesthésie. Le propriocepteur est le récepteur sensoriel qui assure la proprioception. La proprioception a été d'abord caractérisée chez les humains.
Contrainte (mécanique)vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Mécanique de la ruptureLa catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
Résistance des matériauxvignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).
TendinopathyTendinopathy is a type of tendon disorder that results in pain, swelling, and impaired function. The pain is typically worse with movement. It most commonly occurs around the shoulder (rotator cuff tendinitis, biceps tendinitis), elbow (tennis elbow, golfer's elbow), wrist, hip, knee (jumper's knee, popliteus tendinopathy), or ankle (Achilles tendinitis). Causes may include an injury or repetitive activities. Less common causes include infection, arthritis, gout, thyroid disease, diabetes and the use of quinolone antibiotic medicines.
Structural integrity and failureStructural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load (weight, force, etc.) without breaking and includes the study of past structural failures in order to prevent failures in future designs. Structural integrity is the ability of an item—either a structural component or a structure consisting of many components—to hold together under a load, including its own weight, without breaking or deforming excessively.