Séquençage de l'ADNcadre|Résultat du séquençage par la méthode de Sanger. L'ordre de chaque bande indique la position d'un nucléotide A,T,C ou G Le séquençage de l'ADN consiste à déterminer l'ordre d'enchaînement des nucléotides pour un fragment d’ADN donné. La séquence d’ADN contient l’information nécessaire aux êtres vivants pour survivre et se reproduire. Déterminer cette séquence est donc utile aussi bien pour les recherches visant à savoir comment vivent les organismes que pour des sujets appliqués.
GénomiqueLa génomique est une discipline de la biologie moderne. Elle étudie le fonctionnement d'un organisme, d'un organe, d'un cancer, etc. à l'échelle du génome, au lieu de se limiter à l'échelle d'un seul gène. La génomique se divise en deux branches : La génomique structurale, qui se charge du séquençage du génome entier ; La génomique fonctionnelle, qui vise à déterminer la fonction et l'expression des gènes séquencés en caractérisant le transcriptome et le protéome. La génomique est l'équivalent de la métabolomique pour les métabolites.
Third-generation sequencingThird-generation sequencing (also known as long-read sequencing) is a class of DNA sequencing methods currently under active development. Third generation sequencing technologies have the capability to produce substantially longer reads than second generation sequencing, also known as next-generation sequencing. Such an advantage has critical implications for both genome science and the study of biology in general. However, third generation sequencing data have much higher error rates than previous technologies, which can complicate downstream genome assembly and analysis of the resulting data.
Sanger sequencingSanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederick Sanger and colleagues in 1977, it became the most widely used sequencing method for approximately 40 years. It was first commercialized by Applied Biosystems in 1986. More recently, higher volume Sanger sequencing has been replaced by next generation sequencing methods, especially for large-scale, automated genome analyses.
Whole genome sequencingWhole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
Clinical metagenomic sequencingClinical metagenomic next-generation sequencing (mNGS) is the comprehensive analysis of microbial and host genetic material (DNA or RNA) in clinical samples from patients by next-generation sequencing. It uses the techniques of metagenomics to identify and characterize the genome of bacteria, fungi, parasites, and viruses without the need for a prior knowledge of a specific pathogen directly from clinical specimens.
Exome sequencingExome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome (known as the exome). It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons—humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.
Projet Génome humainvignette|Le génome humain est constitué de l'ensemble de l'information portée par nos 23 paires de chromosomes. Le (PGH, ou HGP pour l'anglais Human Genome Project) est un programme lancé fin 1988 dont la mission était d'établir le séquençage complet de l'ADN du génome humain. Son achèvement a été annoncé le . Le nouveau projet lancé dans la foulée en , ENCODE (Encyclopedia of DNA Elements), donne des résultats importants sur l'ADN non codant humain.
Acide désoxyribonucléiquevignette|Structure de la double hélice d'ADN. vignette|Structure chimique de l'ADN illustrant les quatre configurations des paires AT et GC entre les deux armatures de la double hélice, constituées d'une alternance de phosphate et de désoxyribose. L'acide désoxyribonucléique, ou ADN, est une macromolécule biologique présente dans presque toutes les cellules ainsi que chez de nombreux virus. L'ADN contient toute l'information génétique, appelée génome, permettant le développement, le fonctionnement et la reproduction des êtres vivants.
Conférence d'AsilomarLa conférence d'Asilomar a été organisée en 1975 par Paul Berg (futur prix Nobel de chimie en 1980). Elle appelait à la mise en place d'un moratoire sur les manipulations génétiques, afin d'éviter que des bactéries génétiquement modifiées puissent se disperser dans l'environnement. Paul Berg avait envisagé d’insérer dans une bactérie Escherichia coli un gène du virus SV40, connu comme étant cancérigène. Or E. coli est commune dans l'environnement et notamment dans notre tube digestif.