Publication

Hardware-oriented pruning and quantization of Deep Learning models to detect life-threatening arrhythmias

Alexandre Schmid, Lizeth Gonzalez Carabarin
2021
Article de conférence
Résumé

Wearable solutions based on Deep Learning (DL) for real-time ECG monitoring are a promising alternative to detect life-threatening arrhythmias. However, DL models suffer of a large memory footprint, which hampers their adoption in portable technologies. Therefore, we leverage a hardware-oriented pruning approach to effectively shrink DL models. We demonstrate that tiny DL models can be reduced to 5.55x (pruning), and 26.6x (pruning+quantization) compression rate, with 82.9% FLOP's reduction. These ultra-compressed models are able to effectively classify life-threatening arrhythmias with minimal or no loss of performance compared with their non=pruned counterparts, which can pave the path towards DL-based biomedical portable solutions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.